# **AUTOMATION IN SPACE OPERATION**

#### **AUTOMATION REVOLUTIONIZES SPACECRAFT OPERATIONS BY ENABLING:**

# **Complex Maneuvers Autonomous Communication Scientific Experimentation**

It forms the backbone of modern space missions, ensuring efficiency, reliability, and success.

#### **KEY CONSIDERATIONS FOR AUTOMATION**

Before implementing automation, address critical questions to align strategy with mission objectives:

# Mission Complexity

What unique challenges and needs must the system address?

### Desired Outcomes

Efficiency, data quality, or safety – each goal shapes automation design.



#### **THREE CRITICAL LEVELS OF AUTOMATION**

### **Ground-Based Systems**

- Mission control handles trajectory calculations, data analysis, and command sequencing.
- Ensures smooth operations and adaptability to mission needs.

## Onboard Automation

- Manages navigation, system health, and scientific data processing autonomously.
- Operates critical systems like solar panels and antennas.

### Complementary Interaction

- Ground and spacecraft systems work together.
- Ground recalibrates onboard systems; spacecraft provide real-time updates.



#### **COMPLEXITY IN AUTOMATION**

**Enhancing Efficiency & Reliability** Automation supports tasks from routine to complex, reducing risks and enabling long-duration missions.

# Daily Workflow Automation

- Routine tasks like solar panel orientation and system checks are automated to save time and reduce errors.
- Example: Automated solar panel positioning ensures optimal energy capture.

## Complex **Scenarios**

- Advanced systems diagnose issues but often require human intervention for root cause analysis.
- Example: Anomaly detection in power grids.





